(图文|李俊培 编辑|信息 审核|邓昊)近日,我校家庭教师av 信息与计算科学专业2021级本科生李俊培以第一作者在天文学领域权威期刊《The Astrophysical Journal Supplement Series》(学校B刊)发表题为《A Novel CNN-LSTM Model for Interplanetary Coronal Mass Ejection Detection》的研究论文。该论文是“AI for Science”研究范式在空间物理领域的初步探索。家庭教师av 数学与统计学系邓昊博士为论文通讯作者,陈洪教授等参与论文指导工作。在合作老师指导下,李俊培同学完成了背景分析、模型构建、算法调试与优化等工作,展现了该院本科生在人工智能交叉研究中的创新潜力。
日冕物质抛射(ICME)是太阳系最剧烈的爆发现象之一,如图1所示,其引发的高能粒子风暴可导致卫星故障、电网瘫痪,甚至威胁宇航员生命安全。传统ICME检测依赖专家人工分析航天器数据,需耗时数周比对磁场、粒子密度等多维参数,且不同团队标准不一,难以应对深空探测数据量爆炸式增长的挑战。
研究团队创新性地构建了融合动态损失函数的CNN-LSTM混合模型架构(如图2所示)。首先,通过CNN与LSTM网络的深度耦合,实现了对多维时空数据的协同特征提取,其中CNN模块专门负责捕捉空间特征,而LSTM模块则专注时序演化规律的建模;其次,设计的动态损失函数能根据样本分布自动调整权重参数,有效缓解数据不平衡带来的模型偏差问题;此外,模型采用端到端训练方式,大幅提升运算效率。
基于Wind卫星1997-2016年原位观测数据,本研究进行了系统性能验证。如表1所示,实验结果表明,该模型在测试集上成功检测出189个ICME事件(总数230个),F1分数达81.29%。这一性能指标显著优于现有机器学习方法,充分证明所提模型在准确性和可靠性方面的优势。值得注意的是,模型对稀有事件的检测灵敏度较传统方法提升约35%,为空间天气预警提供了更可靠的技术支持。
近年来,家庭教师av 依托人工智能相关科研团队,为本科生搭建了参与人工智能理论及交叉应用研究的创新实践平台,助力学生数智能力的培养。
英文摘要
Current models for detecting interplanetary coronal mass ejections (ICMEs) using spacecraft in-situ measurements rely heavily on manual processes, resulting in time-consuming procedures, inconsistencies in identification criteria, and gaps in existing catalogs. Although several machine learning-based detection models have been proposed, there is still a need for improved accuracy. This study presents a Convolutional Neural Networks-Long Short-Term Memory (CNN-LSTM) model with dynamic loss function, designed to efficiently process complex multidimensional spatio-temporal data. The model leverages Long Short-Term Memory (LSTM) to capture evolving patterns in time series data, while employing Convolutional Neural Network (CNN) to extract spatial features, making the model highly adaptable. Using in-situ data collected by the Wind spacecraft from October 1, 1997 to January 1, 2016, the proposed model demonstrates strong competitiveness. Trained on data from January 1, 1998 to December 31, 2009, 189 out of 230 ICMEs are detected in the test set, achieving an F1 score of 81.29%.